Metric Formulae for Nonconvex Hamilton–jacobi Equations and Applications
نویسنده
چکیده
We consider the Hamilton-Jacobi equation H(x,Du) = 0 in Rn, with H non enjoying any convexity properties in the second variable. Our aim is to establish existence and nonexistence theorems for viscosity solutions of associated Dirichlet problems, find representation formulae and prove comparison principles. Our analysis is based on the introduction of a metric intrinsically related to the 0–sublevels of the Hamiltonian, given by an inf-sup game theoretic formula. We also study the case where the equation is critical, i.e. H(x,Du) = −ε does not admit any viscosity subsolution, for ε > 0.
منابع مشابه
Envelopes and nonconvex Hamilton–Jacobi equations
This paper introduces a new representation formula for viscosity solutions of nonconvex Hamilton–Jacobi PDE using “generalized envelopes” of affine solutions. We study as well envelope and singular characteristic constructions of equivocal surfaces and discuss also differential game theoretic interpretations. In memory of Arik A. Melikyan.
متن کاملA PDE approach to large-time asymptotics for boundary-value problems for nonconvex Hamilton-Jacobi Equations
We investigate the large-time behavior of three types of initial-boundary value problems for Hamilton-Jacobi Equations with nonconvex Hamiltonians. We consider the Neumann or oblique boundary condition, the state constraint boundary condition and Dirichlet boundary condition. We establish general convergence results for viscosity solutions to asymptotic solutions as time goes to infinity via an...
متن کاملMetric Viscosity Solutions of Hamilton-jacobi Equations
A theory of viscosity solutions in metric spaces based on local slopes was initiated in [39]. In this manuscript we deepen the study of [39] and present a more complete account of the theory of metric viscosity solutions of Hamilton–Jacobi equations. Several comparison and existence results are proved and the main techniques for such metric viscosity solutions are illustrated.
متن کاملA Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations
In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin methods were originally introduced for hyperbolic conservation laws. They combine the central scheme and the discontinuous Galerkin method and therefore carry many features of both methods. Since Hamilton-Jacobi equations in general...
متن کاملSome Results on the Large Time Behavior of Weakly Coupled Systems of First-order Hamilton-jacobi Equations
Systems of Hamilton-Jacobi equations arise naturally when we study the optimal control problems with pathwise deterministic trajectories with random switching. In this work, we are interested in the large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations in the periodic setting. The large time behavior for systems of Hamilton-Jacobi equations have been obtained by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012